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Summary

Spaceflight and bed-rest deconditioning
decrease maximal oxygen uptake (aerobic
power), strength, endurance capacity, and ortho-
static tolerance. In addition to extensive use of
muscular exercise conditioning as a countermea-
sure for the reduction in aerobic power
( &VO2 max), stimuli from some form of +Gz accel-
eration conditioning may be necessary to attenu-
ate the orthostatic intolerance component of this
deconditioning. Hypothesis: There will be no
significant difference in the physiological
responses (oxygen uptake, heart rate, ventilation,
or respiratory exchange ratio) during supine
exercise with moderate +Gz acceleration.
Methods: Seven male subjects (24-39 yrs.)
exercised supine on the human powered centri-
fuge (HPC). Each subject performed maximal
oxygen uptake ( &VO2 max) and submaximal exer-
cise tests at 42%, 61% and 89% of &VO2 max

under two conditions: exercise and exercise +
acceleration. During exercise + acceleration the
subjects accelerated on the HPC at a mean (±SE)
level of +2.20 ± 0.02 Gz (50% of max Gz) while
exercising. Results: There were no significant
differences in &VO2 , HR, or &VE BTPS during the
submaximal or maximal exercise runs with
added acceleration. Mean (±SE) &VO2 max for
exercise was 2.86 ± 0.12 L •  min-1 (34.8 ± 2.3 ml
•  min-1 •  kg-1) and for exercise + acceleration was
3.09 ± 0.14 L • min-1 (37.3 ± 1.7 ml •  min-1 •  kg-1).
The respiratory exchange ratio (RE) was
significantly different at 61% (p<0.05) and 89%
(p<0.01) of &VO2 max. Conclusion: There were no

significant positive or negative effects among
the tested parameters when moderate (+2.2 Gz)
acceleration accompanied exercise. It is con-
cluded that moderate acceleration does not affect
the normal relationships between oxygen uptake,
heart rate, ventilation, or respiratory exchange
ratio in relation to a relative exercise load.

Introduction

With the increasing probability of a human mis-
sion to Mars and the increased duration and
number of Space Shuttle flights to construct the
space station, it is now more important than ever
to find optimal countermeasures for attenuation
or elimination of the adverse physiological ef-
fects during and after spaceflight. The question
of type, intensity, and duration of countermea-
sures for use by astronauts in flight has been
debated for years (Fortney et al.1996).

Exposure to spaceflight significantly impairs
physiological responses and physical perform-
ance of astronauts during and after reentry into
Earth’s gravitational field (Buckey et al. 1996;
Convertino 1996; Fortney et al. 1998). Fortney
et al. (1998) found 3 cosmonauts so debilitated
after a 115-day mission that they were not
allowed to perform even moderate submaximal
exercise until five days after landing. Some
physiological effects of long-term spaceflight
(decreased aerobic power, muscular strength,
and endurance capacity; and accentuated
orthostatic intolerance) become functionally
manifest when astronauts are re-exposed to
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gravitational fields. Countermeasures, such as
exercise and acceleration, have been studied
separately and in combination. Studies have
been conducted with separate treatments
(Greenleaf et al. 1989a; Greenleaf 1997; Levine
et al. 1996; Rosenhamer 1968; Shvartz 1996;
White et al. 1966), and with combined treat-
ments (Bjurstedt et al. 1968; Greenleaf et al.
1997; Rosenhamer 1967; Vil-Vilyams 1994;
Vil-Vilyams and Shul’zhenko 1980). Even now,
use of many of these treatments separately as
countermeasures has had only moderate success
for attenuating all the adverse physiological
effects of spaceflight.

Based on physical work requirements for astro-
nauts during spaceflight and re-entry, and from
bed-rest deconditioning (reduction of physical
fitness) studies that utilized exercise condition-
ing as a countermeasure for the reduction of
aerobic power and deterioration of muscular
strength and endurance, it is clear that exercise
conditioning protocols are necessary. However,
exercise conditioning alone does not overcome
the problem of orthostatic intolerance (Greenleaf
et al. 1989c; White et al. 1965), defined as the
time a subject can tolerate standing or the head-
up posture when the physiological system can no
longer compensate for the stress resulting in
adverse presyncopal signs and symptoms lead-
ing to fainting (Geelen and Greenleaf 1993).
Intermittent +Gz acceleration conditioning dur-
ing bed rest can significantly attenuate the
decreased orthostatic (tilt) tolerance after bed
rest (White et al. 1965). Bjurstedt et al. (1968)
and Rosenhamer (1967) have investigated
cardiovascular and respiratory responses during
acceleration combined with exercise on a long-
arm centrifuge. Vil-Vilyams (1994) and Vil-
Vilyams and Shul’zhenko (1980) utilized com-
bined exercise and +Gz acceleration condition-
ing on a short-arm centrifuge to attenuate the
decreased work capacity and orthostatic toler-
ance associated with deconditioning. Therefore,
it is possible, by combining exercise and +Gz
acceleration conditioning simultaneously on a
human powered centrifuge, that we could sig-
nificantly reduce the astronauts’ exercise time in

space while counteracting adverse effects of
spaceflight deconditioning.

Thus, the purpose of this study was to determine
the effect of additional +Gz acceleration on
selected physiological responses (oxygen up-
take, ventilation, heart rate, and respiratory
exchange ratio) during exercise on normal,
ambulatory, unconditioned men. The hypothesis
was that there would be no significant differ-
ences in these physiological responses during
exercise with moderate +Gz acceleration.

Literature Review

Introduction

The purpose for countermeasures is to amelio-
rate the adaptive responses of astronauts induced
by spaceflight and to allow them to function
productively during and especially after flight.
Major factors that can impair performance dur-
ing flight are decreases in aerobic power and
muscular strength and endurance (Greenleaf et
al. 1989b). Countermeasures used by astronauts
include physical exercise conditioning during
flight, and fluid loading and G-suit inflation
before reentry (Greenleaf et al. 1989c). It was
not until the mid 1960’s that +Gz acceleration
conditioning was studied as a possible counter-
measure for orthostatic tolerance (White et al.
1965; White et al. 1966). Greenleaf et al. (1997),
Vil-Vilyams (1994), and Vil-Vilyams and
Shul’zhenko (1980) have reported some effects
of combining exercise and acceleration for use
as countermeasures.

Deconditioning

Confinement to bed rest (BR) in the 60 head-
down position is a valuable analog for simulat-
ing some of the effects of spaceflight as it
induces similar physiological changes in human
cardiovascular, musculoskeletal, and neuroendo-
crine systems (Convertino 1996). Many adaptive
cardiovascular responses during BR have sig-
nificant impact on exercise endurance capacity
and aerobic power. The maximal oxygen uptake
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( &VO2 max), defined as the point at which no fur-
ther increase in &VO2  is possible with increasing
exercise intensity (Brooks et al. 1996), is usually
decreased after BR (Fortney et al. 1996). Most
factors which enhance &VO2 max such as hyper-
volemia, increased red cell mass, increased
strength, muscle hypertrophy, and increased
arterial baroreceptor sensitivity, are affected
negatively by BR deconditioning (Fortney et al.
1996) .

At a given oxygen uptake the cardiovascular
responses to exercise are exaggerated after BR
deconditioning; these include increases in heart
rate, cardiovascular peripheral resistance, dia-
stolic blood pressures, and the respiratory
exchange ratio (Fortney et al. 1996, Geelen and
Greenleaf 1993). These responses facilitate the
increased stroke volume to help counteract the
reduced maximal cardiac output, the reduced
exercise endurance, and the unchanged systolic
blood pressure (Fortney et al. 1996).

Physiological responses to head-up tilt, passive
standing, and +Gz acceleration are also altered
after exposure to BR (Convertino 1996). Multi-
ple factors influence post-BR orthostatic func-
tion which include decreased blood volume,
decreased baroreceptor sensitivity, and altered
autonomic function (Fortney et al. 1996); as well
as increased venous distensibility (Leftheriotis et
al. 1998), and decreased cerebral autoregulation
(Zhang et al. 1997). The control of orthostatic
tolerance resides in the neuroendocrine system
which controls the cardiovascular system to
maintain adequate arterial pressure and blood
flow to the tissues, especially the brain
(Convertino et al. 1984). Reentry from space
into the Earth’s gravitational field usually results
in multiple symptoms, termed the gravitational
reentry syndrome, part of which is manifested
by decreased orthostatic tolerance (Burton and
Smith 1996).

Greenleaf (1997) found that orthostatic (tilt-
table) tolerance was decreased significantly by
19-43%, after 30 days of -60 head-down BR and
White et al. (1996) found tolerance to +Gz

acceleration decreased by 33% to 55% (G-
units) after 10 days of horizontal BR. There are
no reports of significantly increased acceleration
tolerance following prolonged exposure to BR
or immersion deconditioning.

Countermeasures

Exercise.    The decline in aerobic exercise
capacity and power during BR deconditioning
can be restored by intermittent exercise condi-
tioning. Changes in &VO2 max have been measured
many times before and after prolonged BR
(Convertino 1996). Chase et al. (1966) reported
positive conditioning responses such that peak
aerobic power was actually higher after BR.
Four untrained subjects, who exercised for 30
min •  day-1 on a horizontal bed that moved later-
ally between two vertical trampolines, had a
mean increase in &VO2 max of 16%; while a sec-
ond group of untrained subjects, who exercised
in the horizontal-supine position on a cycle
ergometer, increased their &VO2 max by only 8.5%.

Greenleaf et al. (1989a, 1989b) designed and
tested intensive exercise-conditioning protocols
that maintained &VO2 max and muscular strength
and endurance at ambulatory-control levels
during 30 days of −60 head-down BR decondi-
tioning. The protocol consisted of intermittent
isotonic leg exercise conditioning for 30 min
twice a day in the horizontal-supine position,
and maximal isokinetic knee flexion and exten-
sion also supine for 2 x 30 min •  day-1. These
exercise conditioning protocols were designed to
maximize intensity and minimize duration and
risk of overtraining. The subjects warmed up on
the cycle ergometer for 7 min at a relative inten-
sity of 40% &VO2 max, which was followed by 2
min of exercise at 60, 70, 80, 90, and 80%
&VO2 max, with each bout separated by 2 min at

40%, and a final 5-min cool-down period. The
near-peak, variable intensity, isotonic leg exer-
cise training in moderately trained subjects
during BR maintained &VO2 max at pre-bed rest
levels, while the no-exercise control group
decreased their &VO2 max significantly by about
18%. However, exercise conditioning has little
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effect, if any, on reducing orthostatic (tilt)
intolerance after BR. Greenleaf et al. (1989b)
found no effect of either isotonic or isokinetic
exercise conditioning during BR on the expected
reduction of orthostatic (tilt) tolerance with sig-
nificant increases in &VO2 max of 20%. Results
from short term (12 days, isotonic exercise con-
ditioning) and long term (6 months, isotonic and
isometric exercise conditioning) studies in
ambulatory subjects indicate no significant
change in orthostatic (tilt) tolerance of subjects
with increased &VO2 max (Greenleaf et al. 1988).
Results from spaceflight and ground-based
studies suggest that repeated endurance exercise
designed to restore aerobic power has not been
able to provide appropriate stimuli to affect the
mechanism that underlies orthostatic intolerance
(Greenleaf 1997).

Acceleration.    Intermittent, passive (no exercise
or muscular contraction) +Gz acceleration not
only restores the reduced orthostatic tolerance
that occurs after BR deconditioning (White et al.
1965), but also redistributes and retains blood in
the venous system of the lower extremities
similar to that during standing (Convertino
1996). White et al. (1965) reported that the
expected deterioration in the ability to tolerate
900 head-up tilt for 20 min was largely alleviated
with intermittent exposure to +1Gz and +4Gz (at
the subjects feet) acceleration conditioning 4 x
20 min •  day-1 on a 1.8 m centrifuge during 41
days of horizontal BR. White et al. (1966) also
studied the influence of acceleration on a 1.8 m
centrifuge during 10 days of BR. The subjects
were accelerated 4 x 20 min •  day-1 at +1.75Gz
measured at the heart; the expected deterioration
in the ability to tolerate 700 head-up tilt for 20
min was alleviated with this periodic accelera-
tion. These data indicate the validity of accel-
eration as a positive countermeasure for the
adverse effects of BR on orthostatic tolerance,
and suggest that such countermeasures could
also ameliorate the adverse physiological effects
during and after spaceflight.

Exercise + acceleration: long-arm centrifuge
with radius > 2.0 m.    By combining exercise with

+Gz acceleration, Bjurstedt et al. (1968) and
Rosenhamer (1967, 1968) measured physiologi-
cal responses during exercise at 300, 600, and
900 kpm •  min-1 at 1Gz (centrifuge stationary)
and during +3Gz acceleration on a long-arm
centrifuge (radius 7.4 m). Bjurstedt et al. (1968)
and Rosenhamer (1967) found significant
increases in heart rate, oxygen uptake, and pul-
monary minute ventilation with a change from
rest to exercise at +3Gz at 300, 600, and 900
kpm •  min-1 compared to rest and exercise at
+1Gz (normal gravity).

Exercise + acceleration: short-arm centrifuge
with radius < 2.0 m.    Vil-Vilyams and
Shulzhenko (1980) investigated cardiovascular
responses and G tolerances with combined
short-arm centrifuge acceleration and exercise
after 28-days of dry immersion with subjects
wrapped in plastic. Use of periodic rotation on
the short-arm centrifuge at +1 to +2Gz for up to
60 min twice a day, combined with concomitant
exercise on a cycle ergometer, attenuated the
effects of immersion deconditioning on the
cardiovascular system. Vil-Vilyams (1994)
tested subjects at different levels of +Gz accel-
eration exposure alone at 0.8, 1.2, and 1.6 Gz on
a short-arm (radius = 2.0 m) centrifuge before
and after immersion, and combined with exer-
cise. After 7 days of immersion without coun-
termeasures the mean acceleration tolerance of
the subjects was decreased by 28%. However,
performance of exercise + acceleration (+0.8 to
+1.6 Gz) intermittently during immersion led to
restoration of the pre-immersion level of
acceleration tolerance.

These results indicate that combined exercise +
acceleration, on long- or short-arm centrifuges,
can attenuate or eliminate the decreases in aero-
bic power and orthostatic tolerance during
prolonged BR and immersion deconditioning.

Summary

Intensive exercise conditioning during BR can
counteract the usual decreases in aerobic power,
muscular strength, and endurance. However,
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there is little evidence to indicate that exercise
conditioning can overcome orthostatic intoler-
ance after deconditioning. Some data indicate
intermittent acceleration conditioning as an effi-
cient countermeasure for orthostatic intolerance.
Combined use of acceleration (+0.8 to +1.6Gz
on a short-arm centrifuge) and moderate levels
of cycle ergometer exercise attenuated some
effects of deconditioning, thus pointing the way
for future studies to examine the effect of accel-
eration plus exercise on orthostatic tolerance and
work capacity during and after spaceflight.
There appear to be no data on the effect of short-
arm +Gz acceleration + exercise conditioning on
oxygen uptake capacity and orthostatic tolerance
during deconditioning, thus emphasizing the
practical importance of the present study to pro-
vide basic data for design of future studies to test
these countermeasures.

Methods

Centrifuge design and operation    . The human
powered centrifuge (HPC) was designed and
fabricated in the model and machine shop at
Ames Research Center (Greenleaf et al. 1997).
The supine test subjects are oriented in the hori-
zontal supine position, with the top of their head
at the level of the middle cerebral artery located
19 cm from the center of rotation, and their feet
about 1.7 m from the center (Figure 1). There
are three pedaling stations on the HPC; two on
the platform at the outer end of each seat, and
the third on the operator’s off-platform station-
ary cycle. One on-platform pedaling station and
the off-platform stationary cycle are linked by
bicycle chains and sprockets to the center hub,
and rotation of the HPC can be generated from
these stations. The second on-platform pedaling
station is a basic isolated cycle ergometer
(model 845, Quinton Ergometer, Seattle, WA)
not connected with centrifuge rotation. For

rotation to occur while exercising at this
station, one of the other pedaling stations must
be engaged. In the present study the off-platform
pedaling station was used to power the
centrifuge, while the subjects used the Quinton
Ergometer for exercise on the HPC; this allowed
the subjects to exercise with and without
acceleration on the same ergometer.

Subjects.    Seven healthy men (24-40 yrs, Table
1) provided written informed consent and
received a thorough medical examination
including medical history, ECG, and blood and
urine tests. This study was approved by the
Human Research Review Boards at Ames
Research Center and San Francisco State Uni-
versity. All subjects were asked to abstain from
alcohol and caffeine 24 hours before their tests.
Subjects who were tested in the morning were
asked not to eat breakfast, while subjects tested
in the afternoon were asked not to eat lunch: all
complied.

Procedure.    Each subject participated in both
exercise and exercise + acceleration tests
consisting first of a maximal oxygen uptake
( &VO2 max) determination followed by sub-
maximal loads of 25%, 50% and 75% of the
maximal load. Acceleration levels for the
exercise + acceleration tests were arbitrarily
selected at 50% of the subjects maximum +Gz
(rpm) acceleration on the HPC. Maximal +Gz
(rpm) levels were determined while the subject
exercised in the horizontal supine body position
at the on-platform pedaling station. The 50%
+Gz (rpm) levels were used by the off-platform
operator to rotate the centrifuge during the
exercise + acceleration phase.
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Figure 1. Human-powered short-arm centrifuge schematic.

Leg exercise was performed with the subject
supine on the HPC with the cycle ergometer. For
the maximal test the subjects had warm-up peri-
ods of 2 min at 400 kpm •  min-1 and 1 min at
800 kpm •  min-1, with a rest period of approxi-
mately 2 min between tests (Table 2). The
maximal test began with a warm-up at 800 kpm
•  min-1 for 30 sec. This was followed with 1 min
exercise loads of 1000 kpm •  min-1, then 1200
kpm •  min-1, and continuing with 100 kpm •
min-1 increases until the subject could no longer
keep the pace of 60 rpm, or stopped due to

exhaustion (Table 2).

The submaximal tests with exercise and exercise
+ acceleration consisted of two warm-up phases;
first for 2 min at 400 kpm •  min-1, and second
for 1 min at 800 kpm •  min-1. Both warm up
periods were followed by 2-min rest periods.
The submaximal test followed with 4-min exer-
cise bouts at 25%, 50% and 75% of the maximal
exercise load
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Table 1. Subject anthropometric data.

Anthropometry

Subject Age, yr. Height, cm Weight, kg Surface Area, m2

Mbar 24 177.0 82.77 2.03

Bar 31 185.8 86.55 2.12

Guf 40 168.5 59.82 1.68

Mor 33 185.0 93.00 2.20

Oku 24 174.0 76.77 1.94

Rea 38 178.6 95.40 2.20

Sav 39 183.5 88.85 2.14

Mean 33 178.9 83.31 2.04

SD 7 6.3 12.08 0.19

SE 3 2.4 4.57 0.07

Table 2. Exercise and exercise + acceleration maximal and submaximal exercise tests protocols.

with a 2-min rest period between each bout
(Table 2). Timing for exercise + acceleration did
not start until the off-platform operator reached
the appropriate +Gz level. Five of the 7 subjects
had 24 hr recovery periods between their maxi-
mal test and the subsequent submaximal tests.
Two subjects completed their submaximal and
maximal tests the same day, with at least 3 hr
rest between tests so that their heart rates and
&VO2  had returned to pre-exercise levels. The

order of the exercise and exercise + acceleration
tests was assigned randomly.

Instrumentation.    The subjects were monitored
with an electrocardiogram (model 78203A,
Hewlett-Packard, Waltham MA) for wave form
and heart rate. The ECG was displayed, proc-
essed, and stored on a Gateway 2000 personal
computer (model 4DX2-66V, North Sioux City,
SD) for the medical monitor and investigators.

The oxygen uptake ( &VO2 ), pulmonary minute
ventilation ( &VEBTPS ), and respiratory exchange
ratio (RE) were measured and calculated with the
CPX Express System (model 762035, Medical
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Graphics Corp., St. Paul, MN) and processed
and stored on a laptop computer (Power Note
3000 Media, Zenon Inc., Los Angeles, CA).

Voice communication was maintained among
the medical monitor, centrifuge operator,
research assistants, and the test subject. Video
coverage of the entire centrifuge room including
the operator, and coverage from the onboard
camera focused on the subject, was displayed in
the control room for the medical monitor and
investigators.

Data analysis.    All data were analyzed with one-
way analysis of variance (MINITAB version
11.12, Minitab Inc., State College, PA). Level of
significance was p<0.05 and non-significant dif-
ferences were indicated by NS. The null
hypothesis was rejected when p<0.05.

Results

Because oxygen uptake had not been measured
previously in supine subjects using the leg
ergometer on the HPC, a standard curve for
&VO2  vs. absolute exercise load (with and

without acceleration) was constructed (Figure
2). The relative exercise loads (which reduce
variability) were not equivalent to comparable
percentages of &VO2 max. The mean arbitrary 25%
of maximal ergometer exercise load (421 ± 15
kpm •  min-1) was 42 ± 3% of &VO2 max; the 50%
load (828 ± 22 kpm •  min-1) was 61 ± 1%
&VO2 max, and the 75% load (1,236 ± 37 kpm •

min-1) was 89 ± 2% &VO2 max (Table 3). Thus
these results can be given in percentage of
&VO2 max.

Exercise load and acceleration level.    The mean
(±SE) loads for the exercise tests and the rpm
and +Gz levels for the exercise + acceleration
tests are also reported in Table 3: for exercise +
acceleration +Gz = 2.20 ± 0.02 and rpm = 33 ±
1.

Oxygen uptake (             &VO2    ):    Mean (± SE) &VO2  for
the exercise tests were: rest = 0.28 ± 0.02 L •
min-1, 42% = 1.22 ± 0.09 L •  min-1, 61% = 1.80

± 0.08 L •  min-1, 89% = 2.63 ± 0.12 L •  min-1,
and 100% = 2.86 ± 0.12 L •  min-1 (Figure 3).
Mean (± SE) &VO2  for exercise + acceleration
were: rest = 0.21 ± 0.02 L •  min-1, 42% = 1.23 ±
0.06 L •  min-1, 61% = 1.86 ± 0.06 L •  min-1,
89% = 2.66 ± 0.14 L •  min-1 and 100% = 3.09 ±
0.14 L •  min-1 (Figure 3). Comparison of exer-
cise vs. exercise + acceleration conditions indi-
cated no significant differences in &VO2  at rest
(p = 0.10), or at 42% (p = 0.90), 61% (p = 0.50),
89% (p = 0.80), or 100% (p = 0.20) of &VO2 max.

Heart rate (HR):    Mean (±SE) heart rates for
exercise tests were: rest = 65 ± 2 bpm, 42% =
101 ± 3 bpm, 61% = 121 ± 3 bpm, 89% = 155 ±
4 bpm, and 100% = 169 ± 6 bpm, while those
during exercise + acceleration were: rest = 68 ±
2 bpm, 42% = 109 ± 3 bpm, 61% = 132 ± 5
bpm, 89% = 157 ± 5 bpm and 100% = 180 ± 5
bpm (Figure 4). When comparing results from
the two conditions, there were no significant
differences in HR at rest (p = 0.40), or at 42% (p
= 0.09), 61% (p = 0.08), 89% (p = 0.70), or
100% (p = 0.10) of &VO2 max. While not statisti-
cally significant, HR during exercise tended to
be lower than that during exercise + acceleration
at all levels of &VO2 max.

Pulmonary minute ventilation (              &VEBTPS    ):    Mean
(±SE) ventilations for exercise were: rest = 8.84
± 0.84 L •  min-1, 42% = 29.09 ± 1.90 L •  min-1,
61% = 47.87 ± 2.88 L •  min-1, 89%= 87.79 ±
7.82 L •  min-1, and 100% = 119.57 ± 6.85 L •
min-1; those for exercise + acceleration were:
rest = 11.17 ± 0.79 L •  min-1, 42% = 28.27 ± 1.8
L •  min-1, 61% = 47.60 ± 2.5 L •  min-1, 89% =
77.90 ± 7.52 L •  min-1 and 100% = 134.86 ±
8.00 L •  min-1 (Figure 5). There were no
significant differences at rest (p = 0.06), or at
42% (p = 0.80), 61% (p = 0.90), 89% (p = 0.40)
or 100% (p = 0.20) of &VO2 max between the two
conditions.
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Respiratory exchange ratio (R       E      ):    Mean (±SE) RE

for exercise were: rest = 0.94 ± 0.03, 42% = 0.92
± 0.02, 61% = 1.04 ± 0.01, 89% = 1.18 ± 0.02,
and 100% = 1.3 ± 0.03; while those for exercise
+ acceleration were: rest = 0.98 ± 0.05, 42% =
0.89 ± 0.02, 61% = 1.0 ± 0.02, 89% = 1.1 ± 0.02
and 100% = 1.3 ± 0.03 (Figure 6). The RE during
exercise was significantly higher than that of
exercise + acceleration at 61% (p<0.05) and
89% (p<0.01) of &VO2 max; there were non-
significant differences at rest (p = 0.50), 42% (p
= 0.50), and 100% (p = 1.00) of &VO2 max.

Discussion

The purpose of this study was to study some
basic physiological responses

( &VO2 , &VO2 max, HR, &VEBTPS , and RE) when util-
izing exercise alone plus combining it with
moderate acceleration on a short-arm centrifuge
to test the null hypothesis that there would be no
significant differences in these physiological
responses during exercise with added +Gz
acceleration. With the exception of the RE, this
null hypothesis was confirmed.

One advantage of combining these two coun-
termeasures is that exercise + acceleration
attenuates possible adverse symptoms of passive
acceleration alone such as nausea, blurred
vision, and syncope. Thus, most negative
physiological effects of acceleration can be
eliminated with addition of exercise thereby
allowing for longer and safer exposure to +Gz
acceleration if necessary. Bjurstedt et al. (1968)
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Figure 6. Mean (±SE) respiratory exchange ratio on relation to percentage of maximum oxygen uptake with exercise
and exercise + acceleration. *p<0.05, **p<0.01.
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Table 3. Exercise loads at each percentage of oxygen uptake for exercise and for exercise + acceleration
tests. Insert is +Gz and rpm for exercise + acceleration run.

and Rosenhamer (1968) conducted their
experiments on a long-arm centrifuge, thus
negating direct comparisons with the present
data. Long-arm acceleration places the entire
body at the end of the arm at the desired
acceleration level. It is this acceleration force
distributed over the entire body that creates
increased work for returning blood back to the
heart (Burton and Smith 1996), thus increasing
&VO2 , &VE , and HR significantly. With short-arm

acceleration there is an acceleration gradient
ranging from about zero at the head nearest the
center of rotation increasing progressively
towards the feet. Because the thorax is at a lower
G level than the feet, this gradient allows for
easier venous return from below the heart and
less impact on the physiological responses.

Oxygen uptake:    There were no statistically
significant changes in &VO2  with addition of

acceleration to exercise at submaximal or maxi-
mal levels; i.e., there were linear relationships
between &VO2  and absolute and relative exercise
loads. Thus, moderate short-arm acceleration
does not alter the well-established &VO2  versus
exercise load relationship.

Heart rate:    Mean HR for all &VO2  levels tended
to increase progressively during both the exer-
cise and the exercise + acceleration tests; all
values for the later tended to be higher (NS) than
with those of exercise alone, possibly resulting
from the increased hydrostatic pressure with
added acceleration.

Pulmonary minute ventilation    : As exercise loads
increased from resting levels, &VE  increases line-
arly; thereafter, as exercise intensity increases
the &VE  increases nonlinearly. This turn point
(between 40 and 60% &VO2 max) has been referred
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to as the ventilatory threshold, and the nonlinear
increments are usually associated with an
increase in blood lactate levels (Brooks et al.
1996). These exercise &VE  data indicate no effect
of the added +Gz acceleration.

Respiratory exchange ratio:    An RE value of 1.00
indicates body utilization of mainly carbohy-
drates for fuel, and above 1.00 an increase in
blood lactate levels is suspected with enhanced
production of CO2 (Brooks et al. 1996). Thus,
the significantly higher RE values during the
exercise test could be due to an increase in lac-
tate production, which would be consistent with
the increased ventilatory threshold.

Conclusion and Practical
Applications

Results of the present study indicate that addi-
tion of +2.2 Gz short-arm acceleration does not
significantly influence oxygen uptake, heart rate,
or ventilation during maximal or submaximal
exercise. The effects of added acceleration on
RE, however, need further study.

With data from the present and past studies it
can now be hypothesized, when combining
exercise training and acceleration training, that
attenuation of orthostatic intolerance can be
attributed mainly to the +Gz acceleration condi-
tioning. Testing of this hypothesis will require
additional exercise + acceleration studies on
short-arm centrifuges. For the centrifuge to be
used aboard the Space Station it must fit within a
2.0 m radius; therefore data from short-arm cen-
trifuge studies have practical importance.
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Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength,
endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a
countermeasure for the reduction in aerobic power (VO

2max
), stimuli from some form of +Gz acceleration condi-

tioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis:
There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or
respiratory exchange ratio) during supine exercise with moderate +Gz acceleration. Methods: Seven male sub-
jects (24–39 yrs.) exercised supine on the human powered centrifuge (HPC). Each subject performed maximal
oxygen uptake  (VO

2max
) and submaximal exercise tests at 42%, 61% and 89% of VO

2max
 under two conditions:

exercise and exercise + acceleration. During exercise + acceleration the subjects accelerated on the HPC at a
mean (±SE) level of +2.20 ± 0.02 Gz (50% of max Gz) while exercising. Results: There were no significant
differences in VO

2
, HR, or V EBTPS

⋅
 during the submaximal or maximal exercise runs with added acceleration.

Mean (±SE) VO
2max

 for exercise was 2.86 ± 0.12 L   min-1 (34.8 ± 2.3 ml •  min-1 •  kg-1) and for exercise + accel-
eration was 3.09 ± 0.14 L •  min-1 (37.3 ± 1.7 ml •  min-1 •  kg-1).  The respiratory exchange ratio (R

E
) was signifi-

cantly different at 61% (p<0.05) and 89% (p<0.01) of VO
2max

. Conclusion: There were no significant positive or
negative effects among the tested parameters when moderate (+2.2 Gz) acceleration accompanied exercise. It is
concluded that moderate acceleration does not affect the normal relationships between oxygen uptake, heart rate,
ventilation, or respiratory exchange ratio in relation to a relative exercise load.
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